Abstract
This paper presents a sliding-mode control design of a boost-buck switching converter for a voltage step-up dc-ac conversion without the use of any transformer. This approach combines the step-up/step-down conversion ratio capability of the converter with the robustness properties of sliding-mode control. The proposed control strategy is based on the design of two sliding-control laws, one ensuring the control of a full-bridge buck converter for proper dc-ac conversion, and the other one the control a boost converter for guaranteeing a global dc-to-ac voltage step-up ratio. A set of design criteria and a complete design procedure of the sliding-control laws are derived from small-signal analysis and large-signal considerations. The experimental results presented in the paper evidence both the achievement of step-up dc-ac conversion with good accuracy and robustness in front of input voltage and load perturbations, thus validating the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems I: Regular Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.