Abstract

This paper presents a sliding-mode control design of a boost-buck switching converter for a voltage step-up dc-ac conversion without the use of any transformer. This approach combines the step-up/step-down conversion ratio capability of the converter with the robustness properties of sliding-mode control. The proposed control strategy is based on the design of two sliding-control laws, one ensuring the control of a full-bridge buck converter for proper dc-ac conversion, and the other one the control a boost converter for guaranteeing a global dc-to-ac voltage step-up ratio. A set of design criteria and a complete design procedure of the sliding-control laws are derived from small-signal analysis and large-signal considerations. The experimental results presented in the paper evidence both the achievement of step-up dc-ac conversion with good accuracy and robustness in front of input voltage and load perturbations, thus validating the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.