Abstract
Nacre, also known as mother of pearl, possesses extraordinary mechanical properties resulting from its intriguing hierarchical brick-and-mortar microstructures. Despite prior studies, interactions between nanoasperities during sliding still need to be elucidated. In this study, we measure slip events between nanograins of microlayers at high temporal resolution during torsion-induced sliding. We model the slips as avalanches caused by interactions of atoms on nanograin surfaces, from which power laws and scaling functions describing statistics and dynamics of slip events are studied. The largest avalanche occurs when nanograins leave each other after the maximum contact. The agreement between measurements and predictions shows that avalanches act essentially in the inhomogeneous sliding of nacreous tablets. Further insights into nanofriction provided in this work may lead to the development of nanoscale tribological systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.