Abstract

PurposeWall shear stress (WSS) and pulse wave velocity (PWV) are important parameters to characterize blood flow in the vessel wall. Their quantification with flow-sensitive phase-contrast (PC) cardiovascular magnetic resonance (CMR), however, is time-consuming. Furthermore, the measurement of WSS requires high spatial resolution, whereas high temporal resolution is necessary for PWV measurements. For these reasons, PWV and WSS are challenging to measure in one CMR session, making it difficult to directly compare these parameters. By using a retrospective approach with a flexible reconstruction framework, we here aimed to simultaneously assess both PWV and WSS in the murine aortic arch from the same 4D flow measurement.MethodsFlow was measured in the aortic arch of 18-week-old wildtype (n = 5) and ApoE−/− mice (n = 5) with a self-navigated radial 4D-PC-CMR sequence. Retrospective data analysis was used to reconstruct the same dataset either at low spatial and high temporal resolution (PWV analysis) or high spatial and low temporal resolution (WSS analysis). To assess WSS, the aortic lumen was labeled by semi-automatically segmenting the reconstruction with high spatial resolution. WSS was determined from the spatial velocity gradients at the lumen surface. For calculation of the PWV, segmentation data was interpolated along the temporal dimension. Subsequently, PWV was quantified from the through-plane flow data using the multiple-points transit-time method. Reconstructions with varying frame rates and spatial resolutions were performed to investigate the influence of spatiotemporal resolution on the PWV and WSS quantification.Results4D flow measurements were conducted in an acquisition time of only 35 min. Increased peak flow and peak WSS values and lower errors in PWV estimation were observed in the reconstructions with high temporal resolution. Aortic PWV was significantly increased in ApoE−/− mice compared to the control group (1.7 ± 0.2 versus 2.6 ± 0.2 m/s, p < 0.001). Mean WSS magnitude values averaged over the aortic arch were (1.17 ± 0.07) N/m2 in wildtype mice and (1.27 ± 0.10) N/m2 in ApoE−/− mice.ConclusionThe post processing algorithm using the flexible reconstruction framework developed in this study permitted quantification of global PWV and 3D-WSS in a single acquisition. The possibility to assess both parameters in only 35 min will markedly improve the analyses and information content of in vivo measurements.

Highlights

  • Atherosclerosis is a complex, chronic inflammatory disease of large and medium sized arteries, characterized by the formation of intimal lesions [1]

  • 4D flow measurements were conducted in an acquisition time of only 35 min

  • Increased peak flow and peak wall shear stress (WSS) values and lower errors in pulse wave velocity (PWV) estimation were observed in the reconstructions with high temporal resolution

Read more

Summary

Introduction

Atherosclerosis is a complex, chronic inflammatory disease of large and medium sized arteries, characterized by the formation of intimal lesions (atherosclerotic plaques) [1] These plaques mainly occur at bifurcations, branching regions and in the inner curvature of the aortic arch, where the wall shear stress (WSS) is low and oscillatory [2,3,4]. Another main pathophysiological feature of atherosclerosis is the gradual arterial stiffening due to the loss of elastic fibers [5] and an increased collagen deposition during plaque development [6]. PWV and WSS may serve as CMR-based biomarkers of the vascular state and atherosclerotic lesion burden

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.