Abstract

The non-uniform distributed traffic of chip multi-processor (CMP) demands an on-chip communication infrastructure which is able to avoid congestion under high traffic conditions while possessing minimal pipeline delay at low load conditions. In this paper, we propose a low-latency adaptive router with a low-complexity single-cycle bypassing mechanism to meet the communication needs of CMPs. At low loads, this router transmits a flit using dimension-ordered routing (DoR) in the bypass datapath. When the output port required intra-dimension bypassing is not available, the packet is routed adaptively to avoid congestion. The router also has a simplified virtual channel allocation (VA) scheme that yields a non-speculative low-latency pipeline. By combining the low-complexity bypassing technique together with adaptive routing, the proposed router architecture can achieve low-latency communication under various traffic loads. Simulation shows that proposed router can reduce applications' execution time by 16.9% in average compared to low-latency router SWIFT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.