Abstract
In an earlier paper, the authors presented a new method of computation of slide tracks in the relative motion between femoral head and acetabular cup of total hip prostheses. For the first time, computed tracks were verified experimentally and with an alternative method of computation. Besides being an efficient way to illustrate hip kinematics, the shapes of the slide tracks are known to be of fundamental importance regarding the wear behaviour of prostheses. The verified method was now applied to eight contemporary hip simulator designs. The use of correct motion waveforms and an Euler sequence of rotations in each case was again found to be essential. Considerable differences were found between the simulators. For instance, the shapes of the tracks drawn by the resultant contact force included a circle, ellipse, irregular oval, leaf, twig, and straight line. Computation of tracks correctly for the most widely used hip simulator, known as biaxial, was made possible by the insight that the device is actually three-axial. Slide track patterns have now been computed for virtually all contemporary hip simulators, and both for the heads and for the cups. This comparative analysis forms a valuable basis for studies on the relationship between the type of multidirectional motion and wear. These studies can produce useful information for the design of joint simulators, and improve the understanding of wear phenomena in prosthetic joints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.