Abstract

Diffusion tensor cardiac magnetic resonance (DT-CMR) imaging has great potential to characterize myocardial microarchitecture. However, its accuracy is limited by respiratory and cardiac motion and long scan times. Here, we develop and evaluate a slice-specific tracking method to improve the efficiency and accuracy of DT-CMR acquisition during free breathing. Coronal images were obtained along with signals from a diaphragmatic navigator. Respiratory and slice displacements were obtained from the navigator signals and coronal images, respectively, and these displacements were fitted with a linear model to obtain the slice-specific tracking factors. This method was evaluated in DT-CMR examinations of 17 healthy subjects, and the results were compared with those obtained using a fixed tracking factor of 0.6. DT-CMR with breath-holding was used for reference. Quantitative and qualitative evaluation methods were used to analyze the performance of the slice-specific tracking method and the consistency between the obtained diffusion parameters. In the study, the slice-specific tracking factors showed an upward trend from the basal to the apical slice. Residual in-plane movements were lower in slice-specific tracking than in fixed-factor tracking (RMSE: 2.748 ± 1.171 versus 5.983 ± 2.623, P< 0.001). The diffusion parameters obtained using slice-specific tracking were not significantly different from those obtained from breath-holding acquisition (P> 0.05). In free-breathing DT-CMR imaging, the slice-specific tracking method reduced misalignment of the acquired slices. The diffusion parameters obtained using this approach were consistent with those obtained with the breath-holding technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call