Abstract

Plants have evolved sophisticated regulatory networks to cope with dynamically changing light and temperature environments during day-night and seasonal cycles. However, the integration mechanisms of light and low temperature remain largely unclear. Here, we show that low red:far-red ratio (LR:FR) induces FAR-RED ELONGATED HYPOCOTYL3 (SlFHY3) transcription under cold stress in tomato (Solanum lycopersicum). Reverse genetic approaches revealed that knocking out SlFHY3 decreases myo-inositol accumulation and increases cold susceptibility, whereas overexpressing SlFHY3 induces myo-inositol accumulation and enhances cold tolerance in tomato plants. SlFHY3 physically interacts with ELONGATED HYPOCOTYL5 (SlHY5) to promote the transcriptional activity of SlHY5 on MYO-INOSITOL-1-PHOSPHATE SYNTHASE3 (SlMIPS3) and induce myo-inositol accumulation in tomato plants under cold stress. Disruption of SlHY5 and SlMIPS3 largely suppresses the cold tolerance of SlFHY3-overexpressing plants and myo-inositol accumulation in tomato. Furthermore, silencing of SlMIPS3 drastically reduces myo-inositol accumulation and compromises LR:FR-induced cold tolerance in tomato. Together, our results reveal a crucial role of SlFHY3 in LR:FR-induced cold tolerance in tomato and unravel a novel regulatory mechanism whereby plants integrate dynamic environmental light signals and internal cues (inositol biosynthesis) to induce and control cold tolerance in tomato plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.