Abstract

We develop a slender-body theory for plasmonic resonance of slender metallic nanoparticles, focusing on a general class of axisymmetric geometries with locally paraboloidal tips. We adopt a modal approach where one first solves the plasmonic eigenvalue problem, a geometric spectral problem which governs the surface-plasmon modes of the particle; then, the latter modes are used, in conjunction with spectral-decomposition, to analyse localized-surface-plasmon resonance in the quasi-static limit. We show that the permittivity eigenvalues of the axisymmetric modes are strongly singular in the slenderness parameter, implying widely tunable, high-quality-factor, resonances in the near-infrared regime. For that family of modes, we use matched asymptotics to derive an effective eigenvalue problem, a singular non-local Sturm-Liouville problem, where the lumped one-dimensional eigenfunctions represent axial voltage profiles (or charge line densities). We solve the effective eigenvalue problem in closed form for a prolate spheroid and numerically, by expanding the eigenfunctions in Legendre polynomials, for arbitrarily shaped particles. We apply the theory to plane-wave illumination in order to elucidate the excitation of multiple resonances in the case of non-spheroidal particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.