Abstract

In an extremal eigenvalue problem, one considers a family of eigenvalue problems, each with discrete spectra, and extremizes a chosen eigenvalue over the family. In this chapter, we consider eigenvalue problems defined on Riemannian manifolds and extremize over the metric structure. For example, we consider the problem of maximizing the principal Laplace–Beltrami eigenvalue over a family of closed surfaces of fixed volume. Computational approaches to such extremal geometric eigenvalue problems present new computational challenges and require novel numerical tools, such as the parameterization of conformal classes and the development of accurate and efficient methods to solve eigenvalue problems on domains with nontrivial genus and boundary. We highlight recent progress on computational approaches for extremal geometric eigenvalue problems, including (i) maximizing Laplace–Beltrami eigenvalues on closed surfaces and (ii) maximizing Steklov eigenvalues on surfaces with boundary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.