Abstract
Sleep disorders are prevalent health concerns affecting millions of individuals worldwide, with adverse impacts on overall well-being and cognitive function. Detecting and diagnosing these disorders accurately is crucial for effective treatment planning and management. This project focuses on utilizing Electroencephalogram (EEG) signals, a non-invasive method for monitoring brain activity, to detect sleeping disorders. By leveraging advanced signal processing techniques and machine learning algorithms, this research aims to develop a robust and accurate system capable of identifying various types of sleep disorders, such as insomnia, sleep apnea, and narcolepsy, based on EEG data. The proposed approach holds the potential to enhance early detection, personalized treatment strategies, and ultimately improve the quality of life for individuals affected by sleep disorders. Keywords-Ambulatory EEG, automatic scoring, deep learning, electroencephalography, sleep staging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.