Abstract

We reported previously that 96 h of sleep deprivation (SD) reduced cell proliferation in the dentate gyrus (DG) of the hippocampus in adult rats. We now report that SD reduces the number of new cells expressing a mature neuronal marker, neuronal nuclear antigen (NeuN). Rats were sleep-deprived for 96 h, using an intermittent treadmill system. Total sleep time was reduced to 6.9% by this method in SD animals, but total treadmill movement was equated in SD and treadmill control (CT) groups. Rats were allowed to survive for 3 weeks after 5-bromo-2-deoxyuridine (BrdU) injection. The phenotype of BrdU-positive cells in the DG was assessed by immunofluorescence and confocal microscopy. After 3 weeks the number of BrdU-positive cells was reduced by 39.6% in the SD group compared with the CT. The percentage of cells that co-localized BrdU and NeuN was also lower in the SD group (SD: 46.6 +/- 1.8% vs. CT: 71.9 +/- 2.1, P < 0.001). The percentages of BrdU-labeled cells co-expressing markers of immature neuronal (DCX) or glial (S100-beta) cells were not different in SD and CT groups. Thus, SD reduces neurogenesis in the DG by affecting both total proliferation and the percentage of cells expressing a mature neuronal phenotype. We hypothesize that sleep provides anabolic or signaling support for proliferation and cell fate determination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call