Abstract

Exploring novel early detection biomarkers and developing more efficacious treatments remain pressing tasks in the current research landscape for hepatocellular carcinoma (HCC). Morphologically and molecularly separate from apoptosis, cell death, and autophagy, ferroptosis is a recently discovered, unique, controlled form of cell death. SLC7A11 (also known as xCT) represents a subunit of the cystine-glutamate antiporter (also known as system Xc(-)). A growing body of research suggests that induction of ferroptosis through SLC7A11 can effectively eliminate hepatocellular carcinoma (HCC) cells, particularly those exhibiting resistance to alternative forms of cell death. Thus, targeting ferroptosis via SLC7A11 may become a new direction for the design of therapeutic strategies for HCC. Although many research articles have investigated the possible roles of SLC7A11 in HCC, a study that summarizes the main findings, including the regulators and mechanisms of action of SLC7A11 in HCC is not available. Therefore, we present a comprehensive overview of the functions of ferroptosis, particularly SLC7A11, in the identification, development, and management of HCC in this review. In addition, we discuss how this knowledge can be translated into treatment by providing a systemic therapy in advanced HCC using sorafenib, the first-line drug targeting multiple kinases and SLC7A11. We further dissect the possible barriers as well as the corresponding solutions and provide insights on how to navigate effective treatment using this knowledge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call