Abstract

The spatial learned index constructs a spatial index by learning the spatial distribution, which performs a lower cost of storage and query than the spatial indices. The current update strategies of spatial learned indices can only solve limited updates at the cost of query performance. We propose a novel spatial learned index structure based on a Block Range Index (SLBRIN for short). Its core idea is to cooperate history range and current range to satisfy a fast spatial query and efficient index update simultaneously. SLBRIN deconstructs the update transaction into three parallel operations and optimizes them based on the temporal proximity of spatial distribution. SLBRIN also provides the spatial query strategy with the spatial learned index and spatial location code, including point query, range query and kNN query. Experiments on synthetic and real datasets demonstrate that SLBRIN clearly outperforms traditional spatial indices and state-of-the-art spatial learned indices in the cost of storage and query. Moreover, in the simulated real-time update scenario, SLBRIN has the faster and more stable query performance while satisfying efficient updates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.