Abstract
We propose a method for adaptive nonlinear sequential modeling of vector-time series data. Data is modeled as a nonlinear function of past values corrupted by noise, and the underlying non-linear function is assumed to be approximately expandable in a spline basis. We cast the modeling of data as finding a good fit representation in the linear span of multi-dimensional spline basis, and use a variant of l1-penalty regularization in order to reduce the dimensionality of representation. Using adaptive filtering techniques, we design our online algorithm to automatically tune the underlying parameters based on the minimization of the regularized sequential prediction error. We demonstrate the generality and flexibility of the proposed approach on both synthetic and real-world datasets. Moreover, we analytically investigate the performance of our algorithm by obtaining both bounds of the prediction errors, and consistency results for variable selection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.