Abstract
AbstractThe analysis of protein-protein interactions (PPIs) is crucial to the understanding of cellular organizations, processes and functions. The reliability of the current experimental approaches interaction data is prone to error. Thus, a variety of computational methods have been developed to supplement the interactions that have been detected experimentally. The present paper’s main objective is to present a novel classification framework for predicting PPIs combining the advantages of two algorithmic methods’ categories (heuristic methods, adaptive filtering techniques) in order to produce high performance classifiers while maintaining their interpretability. Our goal is to find a simple mathematical equation that governs the best classifier enabling the extraction of biological knowledge. State-of-the-art adaptive filtering techniques were combined with the most contemporary heuristic methods which are based in the natural selection process. To the best of our knowledge, this is the first time that the proposed classification framework is applied and analyzed extensively for the problem of predicting PPIs. The proposed methodology was tested with a commonly used data set using all possible combinations of the selected adaptive filtering and heuristic techniques and comparisons were made. The best algorithmic combinations derived from these procedures were Genetic Algorithms with Extended Kalman Filters and Particle Swarm Optimization with Extended Kalman Filters. Using these algorithmic combinations high accuracy interpretable classifiers were produced.KeywordsProtein-Protein InteractionsAdaptive FilteringGenetic AlgorithmsParticle Swarm OptimizationLeast Squares AlgorithmRecursive Least SquaresKalman Filtering
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.