Abstract

We present detailed experimental and numerical studies of plasmonic properties of gold nanoring (NR) arrays with different slab thicknesses from 15 to 125 nm. The hybrid plasmon resonances for the bonding and antibonding modes in gold NRs exhibit a high slab thickness dependence behavior in optical properties. For the thinner slab thickness below 50 nm, both hybrid modes show large spectral tunabilities by varying the slab thickness. Furthermore, for such hollow NR structure, the enhancements of electric field intensities at the inner and outer ring surfaces when reducing the slab thickness are investigated. We observe a significant transition of field distributions for the antibonding mode. All these features can be understood by surface charge distributions from our simulations. The results of this study offer a potential strategy to design a composite plasmonic nanostructure with large field enhancement for numerous applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.