Abstract

Gold nanoring arrays are widely applied in various fields benefitting from their localized surface plasmon resonance (LSPR) properties. A key advantage of gold nanoring arrays is that the dipole resonance peak can be systematically tuned by changing the dimensions of gold nanoring arrays. However, most of the currently reported methods for preparing gold nanoring arrays cannot conveniently control the heights of the nanorings at a low cost. Here we introduce a facile method for preparing gold nanoring arrays with tunable plasmonic resonances using colloidal lithography. The dimensions of the nanorings including diameters, lattice constants, even the heights of the nanorings can be conveniently varied. Fourier transform near-infrared (FT-NIR) absorption spectroscopy was used to obtain the plasmonic resonance spectra of the nanoring arrays. All the prepared gold nanoring arrays exhibited a strong NIR or infrared (IR) plasmonic resonance which can be tuned by varying the nanoring dimensions. This versatile method can also be used to fabricate other types of plasmonic nanostructures, such as gold nanocone arrays. The obtained gold nanoring arrays as well as nanocone arrays may have potential applications in surface-enhanced spectroscopy or plasmonic sensing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call