Abstract

A reconstructed human epidermis (RHE) model, the EpiDerm, was investigated and compared to human skin ex vivo regarding tissue penetration and distribution of two chromium species, relevant in both occupational and general exposure in the population. Imaging mass spectrometry was used in analysis of the sectioned tissue. The RHE model gave similar results compared to human skin ex vivo for skin penetration of CrVI. However, the penetration of CrIII into the tissue of the RHE model compared to human skin ex vivo differed markedly, such that in the RHE model the CrIII species accumulated in the tissue layer corresponding to stratum corneum whereas in human skin ex vivo, the CrIII species penetrated evenly through the skin tissue. Further, skin lipids such as cholesterol were less abundant in the RHE model compared to the human skin tissue. Results presented here indicate that the RHE models do not possess the same fundamental properties as human skin tissue. As the RHE models appear to be able to give false negative results, experiments using RHE models for the study of skin penetration should be evaluated with caution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call