Abstract

Dermal fibrosis is a consequence of damage to skin and is accompanied by dysfunction and cosmetic disfigurement. Improved understanding of the pathological factors driving skin fibrosis is critical to development of therapeutic modalities. Here, we describe that the Wnt signalling antagonist SFRP2 is upregulated in organotypic keratinocyte cultures upon experimental reduced hydration, a model that simulates the aberrant epidermal barrier state characteristic of several skin pathologies, including those that manifest in development of fibrosis. Consistent with this, we find that SFRP2 is overexpressed in both the dermis and epidermis of human hypertrophic scar tissue and lesional tissue of a mouse scleroderma model. Knockdown of SFRP2 expression in human fibroblasts antagonises proliferation and myofibroblast differentiation, including deposition of type I collagen, suggesting that SFRP2 signalling in fibroblasts may contribute to propagation of fibrosis in hypertrophic scar, as well as in other clinical indications characterised by skin fibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.