Abstract

The formation mechanism on the convection zone (“skin effect”) of chloride ingress are explored systematically by contrasting concretes in marine atmospheric, splash, tidal, and submerged zones. The depth of convection zone, Δx, and the maximum chloride concentration, Cmax, are two important indicators for estimating the degree of action of the skin effect. Influences of various factors on the skin effect are analyzed, including environmental conditions, mixture proportion, exposure time, and construction method. Statistics of the Δx and Cmax were extracted from field test data in the literatures. Influence of skin effect on the apparent surface chloride concentration (Cs) and diffusion coefficient (Da) was analyzed. Results show that the skin effects of concrete in atmospheric, tidal, splash and submerged zones are different, and it is highlighted that the convection zone exists even in submerged zone. The skin effect of concrete significantly impacts the fitting values of Cs and Da. Effective processing approaches can account for the skin effects of the concrete during durability design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.