Abstract

In this study, the efflorescence formation of geopolymers synthesized from red mud (RM), fly ash (FA) and phosphogypsum (PG) was evaluated to investigate the influence of different proportions. The mechanical properties, leaching properties and microstructure of the geopolymers were studied through compressive strength test, visual observation of efflorescence, leach properties and a series of microscopic tests by changing PG content (0–25 %), reducing precursor alkali concentration (4–10 %) and changing FA content (0–300 g). The results show that PG rich in SO42- lead to the formation of a new efflorescence product Na2SO4, the presence of Aluminum (Al) in FA is beneficial to the polymerization degree and chemical stability of the geopolymer gel, and excessive or insufficient alkali content will affect the polymerization reaction and the efflorescence resistance of the geopolymer. The geopolymers are synthesized with 55 % RM, 25 % FA and 20 % PG as precursors and activated with 10 wt% Na2O, which shows good strength and resistance to efflorescence. Proper alkali content is conducive to the formation of geopolymer strength phase. The initial pH value required for the suitable effective strength and strength development of the multicomponent geopolymers in this study is about 10.5–11.3, which can provide a reference for the synergistic utilization of RM-FA-PG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.