Abstract
SignificanceWeyl semimetals are a class of three-dimensional materials, whose low-energy excitations mimic massless fermions. In consequence they exhibit various unusual transport properties related to the presence of chiral anomalies, a subtle quantum phenomenon that denotes the breaking of the classical chiral symmetry by quantum fluctuations. In this work we present a universal description of transport in weakly disordered Weyl semimetals with several scattering mechanisms taken into account. Our work predicts the existence of a new anomaly-induced transport regime in these materials and gives a crisp experimental signature of a chiral anomaly in optical conductivity measurements. Finally, by also capturing the hydrodynamic regime of quasiparticles, our construction bridges the gap between developments in electronic fluid mechanics and three-dimensional semimetals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have