Abstract

The skin is a potential site of entry for nanoparticles (NP) but the role of disease-associated barrier disturbances on the path and extent of skin penetration of NP remains to be characterized. Silica nanoparticles (SiO2-NP) possess promising potential for various medical applications. Here, effects of different skin barrier disruptions on the penetration of N-(6-aminohexyl)-aminopropyltrimethoxysilane (AHAPS) functionalized SiO2-NP were studied. AHAPS-SiO2-NP (55±6nm diameter) were topically applied on intact, tape stripped or on inflamed skin of SKH1 mice with induced allergic contact dermatitis for one or five consecutive days, respectively. Penetration of AHAPS-SiO2-NP through the skin was not observed regardless of the kind of barrier disruption. However, only after subcutaneous injection, AHAPS-SiO2-NP were incorporated by macrophages and transported to the regional lymph node only. Adverse effects on cells or tissues were not observed. In conclusion, AHAPS-SiO2-NP seem to not cross the normal or perturbed mouse skin. From the Clinical EditorSkin is a potential site of entry for nanoparticles; however, it is poorly understood how skin diseases may alter this process. In tape-stripped skin and allergic contact dermatitis models the delivery properties of AHAPS-SiO2 nanoparticles remained unchanged, and in neither case were these NP-s able to penetrate the skin. No adverse effects were noted on the skin in these models and control mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call