Abstract
Exposure to benzene causes acute myelosuppression and other hematologic disorders. However, the detailed mechanism by which benzene exerts its severe hematotoxicity and potential treatments still require further deciphering and exploration. Herein, we found that hydroquinone (HQ), a main benzene metabolite, significantly increased intracellular reactive oxygen species (ROS) formation and subsequently caused damage to DNA, leading to impaired colony formation capacity and induction of apoptosis in human hematopoietic stem/progenitor cells (HSPCs) in vitro. The effects were mediated by activation of Src kinase, which subsequently activated the p38 signaling pathway while inhibiting the Akt signaling pathway. The mechanism was further verified by pre-treatment with a Src kinase inhibitor SKI-606, which effectively reversed the dampened self-renewal capacity and increased apoptosis of HSPCs induced by HQ in vitro. Furthermore, administration of SKI-606 partially reversed benzene-induced hematotoxicity and prolonged the survival time in benzene-poisoned mice. Taken together, these findings highlight that HQ-induced hematotoxicity in HSPCs is attributed to the Src kinase-mediated activation of p38 signaling pathway and repression of Akt signaling pathway. Notably, SKI-606 as a tyrosine kinase inhibitor may be a promising and potential agent for alleviating benzene-induced hematotoxicity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.