Abstract

Vascular endothelial growth factor C (VEGF-C) expression is associated with the malignant tumour phenotype making it an attractive therapeutic target. We investigated the biological roles of VEGF-C in tumour growth, migration, invasion and explored the possibility of VEGF-C as a potential therapeutic target for the treatment of non-small cell lung cancer (NSCLC). A lentivirus-mediated RNA interference (RNAi) technology was used to specifically knockdown the expression of VEGF-C in A549 cells. Quantitative reverse transcriptase-polymerase chain reaction, flow cytometry, Western blot, immunohistochemistry, cellular growth, migration, invasion and ELISA assays were used to characterise VEGF-C expression in vitro. A lung cancer xenograft model in nude mice was established to investigate whether knockdown of VEGF-C reduced tumour growth in vivo. Silencing of VEGF-C suppressed tumour cell growth, migration and invasion in vitro; suppressed tumour growth, angiogenesis and lymphangiogenesis by tail vein injection of lentivirus encoded shRNA against VEGF-C in vivo. More importantly, silencing of VEGF-C also trapped the VEGFR-2, VEGFR-3, CXCR4, CCR7-dependent axes, and down-regulated the AKT, ERK and p38 signalling pathways. These results suggest that VEGF-C has a multifaceted role in NSCLC growth, migration and invasion; that VEGF-C-mediated autocrine loops with their cognate receptors and chemokine receptors are significant factors affecting tumour progression; and that RNAi-mediated silencing of VEGF-C represents a powerful therapeutic approach for controlling NSCLC growth and metastasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call