Abstract
SKF83959 (3-methyl-6-chloro-7,8-hydroxy-1-[3-methylphenyl]-2,3,4,5-tetrahydro-1H-3-benzazepine), an atypical dopamine receptor-1 (D(1) receptor) agonist, has shown many D(1) receptor-independent effects, such as neuroprotection, blockade of Na(+) channel, and promotion of spontaneous glutamate release, which resemble the effects of the sigma-1 receptor activation. In the present work, we explored the potential modulation of SKF83959 on the sigma-1 receptor. The results indicated that SKF83959 dramatically promoted the binding of (3)H(+)-pentazocine (a selective sigma-1 receptor agonist) to the sigma-1 receptor in brain and liver tissues but produced no effect on (3)H-progesterone binding (a sigma-1 receptor antagonist). The saturation assay and the dissociation kinetics assay confirmed the allosteric effect. We further demonstrated that the SKF83959 analogs, such as SCH22390 [(R)-(1)-7-chloro-8- hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride] and SKF38393 [(+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrobromide], also showed the similar allosteric effect on the sigma-1 receptor in the liver tissue but not in the brain tissue. Moreover, all three tested chemicals elicited no significant effect on (3)H-1,3-di(2-tolyl)-guanidine ((3)H-DTG) binding to the sigma-2 receptor. The present data uncovered a new role of SKF83959 and its analogs on the sigma-1 receptor, which, in turn, may reveal the underlying mechanism for the D(1) receptor-independent effect of the drug.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have