Abstract
A ring R is called right principally quasi-Baer (or simply right p.q.-Baer ) if the right annihilator of a principal right ideal of R is generated by an idempotent. Let R be a ring such that all left semicentral idempotents are central. Let α be an endomorphism of R which is not assumed to be surjective and R be α -compatible. It is shown that the skew power series ring R [[ x; α ]] is right p.q.-Baer if and only if the skew Laurent power series ring R [[ x, x−1 ; α ]] is right p.q.-Baer if and only if R is right p.q.-Baer and any countable family of idempotents in R has a generalized join in I ( R ). An example showing that the α -compatible condition on R is not superfluous, is provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.