Abstract

We examine the timing dependence of nanophotonic devices based on optical excitation transfer via optical near-field interactions at the nanometer scale. We theoretically analyze the dynamic behavior of a two-input nanophotonic switch composed of three quantum dots based on a density matrix formalism while assuming arrival-time differences, or skew, between the inputs. The analysis reveals that the nanophotonic switch is resistant to a skew longer than the input signal duration, and the tolerance to skew is asymmetric with respect to the two inputs. The skew dependence is also experimentally examined based on near-field spectroscopy of InGaAs quantum dots, showing good agreement with the theory. Elucidating the dynamic properties of nanophotonics, together with the associated spatial and energy dissipation attributes at the nanometer scale, will provide critical insights for novel system architectures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.