Abstract

We demonstrate optical excitation transfer in a mixture composed of quantum dots of two different sizes (larger and smaller) networked via optical near-field interactions. For the optical near-field interaction network based on a density matrix formalism, we introduce an optimal mixture that agrees with experimental results. Based on these findings, we theoretically examine the topology-dependent efficiency of optical excitation transfer, which clearly exhibits autonomous, energy-efficient networking behavior occurring at the nanometer scale. We discuss what we can learn from this optical excitation transfer and its implications for information and communications applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call