Abstract

We propose a new method for generating tetrahedralizations for 3D surface meshes. The method builds upon a segmentation of the mesh that forms a rooted skeleton structure. Each segment in the structure is fitted with a stamp - a predefined basic shape with a regular and well-defined topology. After molding each stamp to the shape of the segment it is assigned to, we connect the segments with a layer of tetrahedra using a new approach to stitching two triangulated surfaces with tetrahedra. Our method not only generates a tetrahedralization with regular topology mimicking a bone-like structure with tissue being grouped around it, but also achieves running times that would allow for real-time usages. The running time of the method is closely correlated with the density of the input mesh which allows for controlling the expected time by decreasing the vertex count while still preserving the general shape of the object.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call