Abstract

A method of unstructured technical mesh generation for general three-dimensional domains is presented. A conventional boundary representation is adopted as the basis for the description of solids with evolving geometry and topology. The geometry of the surfaces is represented either analytically or by piecewise polynominal interpolation. A preliminary surface mesh is generated by an advancing-front method, with the nodes inserted by hard-sphere packing in physical space in accordance with a prescribed mesh density. Interior nodes are inserted in a face-centered-cubic (FCC) crystal lattice arrangements coupled to octree spatial subdivision, with the local lattice parameter determined by a prespecified nodal density function. Prior to triangulation of the volume, the preliminary surface mesh is preprocessed by a combination of local transformations and subdivisions in order to guarantee that the surface triangulation be a subcomplex of the volume Delaunay triangulation. A joint Delaunay triangulation of the interior and boundary nodes which preserves the modified surface mesh is then constructed via an advancing-front approach. The resulting mesh is finally improved upon by the application of local transformations. The overall time complexity of the mesher is O( N log N). The robustness and versatility of the approach, as well as the good quality of the resulting meshes, is demostrated with the aid of selected examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.