Abstract

Trisomy 21 (Ts21) causes alterations in skeletal development resulting in decreased bone mass, shortened stature and weaker bones in individuals with Down syndrome (DS). There is a sexual dimorphism in bone mineral density (BMD) deficits associated with DS with males displaying earlier deficits than females. The relationships between causative trisomic genes, cellular mechanisms, and influence of sex in DS skeletal abnormalities remain unknown. One hypothesis is that the low bone turnover phenotype observed in DS results from attenuated osteoblast function, contributing to impaired trabecular architecture, altered cortical geometry, and decreased mineralization. DYRK1A, found in three copies in humans with DS, Ts65Dn, and Dp1Tyb DS model mice, has been implicated in the development of postnatal skeletal phenotypes associated with DS. Reduced copy number of Dyrk1a to euploid levels from conception in an otherwise trisomic Ts65Dn mice resulted in a rescue of appendicular bone deficits, suggesting DYRK1A contributes to skeletal development and homeostasis. We hypothesized that reduction of Dyrk1a copy number in trisomic osteoblasts would improve cellular function and resultant skeletal structural anomalies in trisomic mice. Female mice with a floxed Dyrk1a gene (Ts65Dn,Dyrk1afl/wt) were mated with male Osx-Cre+ (expressed in osteoblasts beginning around E13.5) mice, resulting in reduced Dyrk1a copy number in mature osteoblasts in Ts65Dn,Dyrk1a+/+/Osx-Cre P42 male and female trisomic and euploid mice, compared with littermate controls. Male and female Ts65Dn,Dyrk1a+/+/+ (3 copies of DYRK1A in osteoblasts) and Ts65Dn,Dyrk1a+/+/Osx-Cre (2 copies of Dyrk1a in osteoblasts) displayed similar defects in both trabecular architecture and cortical geometry, with no improvements with reduced Dyrk1a in osteoblasts. This suggests that trisomic DYRK1A does not affect osteoblast function in a cell-autonomous manner at or before P42. Although male Dp1Tyb and Ts65Dn mice exhibit similar skeletal deficits at P42 in both trabecular and cortical bone compartments between euploid and trisomic mice, female Ts65Dn mice exhibit significant cortical and trabecular deficits at P42, in contrast to an absence of genotype effect in female Dp1Tyb mice in trabecular bone. Taken together, these data suggest skeletal deficits in DS mouse models and are sex and age dependent, and influenced by strain effects, but are not solely caused by the overexpression of Dyrk1a in osteoblasts. Identifying molecular and cellular mechanisms, disrupted by gene dosage imbalance, that are involved in the development of skeletal phenotypes associated with DS could help to design therapies to rescue skeletal deficiencies seen in DS.

Highlights

  • IntroductionCommon skeletal phenotypes associated with Down syndrome (DS) include weakened bones, shortened stature and decreased bone mineral density (BMD) as compared to individuals without trisomy 21 (Ts21) [1,2]

  • We performed a Chi-square goodness of fit test and concluded that ratios of the dead animals were consistent with expected outcomes and that significant selection against male Ts65Dn,Dyrk1a+/+/Osx-Cre and Eu,Dyrk1a+/Osx-Cre mice after birth did not occur, there appeared to be fewer male Ts65Dn,Dyrk1a+/+/Osx-Cre and Eu,Dyrk1a+/Osx-Cre mice generated

  • Three copies of Dyrk1a have been hypothesized to be responsible for altered osteoblast and osteoclast activity and/or number leading to an imbalance in bone homeostasis [25,31]

Read more

Summary

Introduction

Common skeletal phenotypes associated with Down syndrome (DS) include weakened bones, shortened stature and decreased bone mineral density (BMD) as compared to individuals without Ts21 [1,2]. These skeletal deficits are caused by trisomy 21 (Ts21), the most common cause of congenital cognitive impairment that occurs in about 1/700-1000 live births [3,4,5]. Unlike osteoporosis in individuals without DS, bone disorders in individuals with Ts21 arise due to developmental deficits at critical times of bone mass accretion and may be compounded by subsequent age-related bone loss [6,7,8,9]. Humans with DS and mouse models of DS exhibit sexual dimorphic features in skeletal anomalies that include age, severity, and skeletal compartment [1,15,16,17,18,19,20]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call