Abstract

The assessment of degradation is crucial for the analysis of human DNA samples isolated from forensic specimens. Forensic quantitative PCR (qPCR) assays can include multiple targets of varying amplicon size that display differential amplification efficiency, and thus different concentrations, in the presence of degradation. The possibility of deriving information on DNA degradation was evaluated in a forensic qPCR assay not specifically designed to detect DNA fragmentation, the Plexor HY (Promega), by calculating the ratio between the estimated concentrations of autosomal (99 bp) and Y-chromosomal (133 bp) targets ("[Auto]/[Y]"). The [Auto]/[Y] ratio measured in 57 formalin-fixed, paraffin-embedded samples was compared to a quality score (QS) calculated for corresponding STR profiles using quantitative data (allele peak height). A statistically significant inverse correlation was observed between [Auto]/[Y] and QS (R = -0.65, p < 0.001). The [Auto]/[Y] values were highly correlated (R = 0.75, p < 0.001) with the "[Auto]/[D]" values obtained using the PowerQuant (Promega) assay, expressly designed to detect DNA degradation through simultaneous quantification of a short (Auto) and a long (D) autosomal target. These results indicate that it is possible to estimate DNA degradation in male samples through Plexor HY data and suggest an alternative strategy for laboratories lacking the equipment required for the assessment of DNA integrity through dedicated qPCR assays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.