Abstract

The differential mobility analyzer (DMA) is a device that sizes aerosol particles based on their electrical mobility. The relationship between particle size and mobility depends, among other factors, on three gas specific parameters, namely, dynamic viscosity, mean free path, and Cunningham slip correction factor C c . Provided these parameters are known, DMA theory is expected to be valid independent of gas type. The present study demonstrates the sizing accuracy of DMAs for gases other than air using monodisperse polystyrene latex (PSL) spheres with nominal diameters of 60 nm, 149 nm, and 343 nm in He, Ar, H 2 , CO 2 , and N 2 O. Eliminating possible systematic errors due to uncertainties in DMA geometry and nominal PSL diameter by normalizing the measured PSL diameters to their respective diameters measured in air, the sheath flow rate Q sh and C c are expected to be the main sources for measurement errors. Since C c data are lacking for PSL spheres in gases other than air, an expression given by Allen...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.