Abstract

Deregulation of the electricity sector, the rise of distributed generation, and a growing interest in local resilience have led to increasing attention on microgrids. In this paper, we present an approach for sizing the microgrid components that accounts for the load flexibility available in buildings with model predictive control. As buildings are becoming smarter, the use of building control systems to regulate building load for different strategies, such as peak demand limiting or load shifting, is becoming increasingly prevalent. When sizing microgrid components under islanded operation, it becomes critical to consider the dynamic nature of the building load, since the intelligent control systems can use the building response to help balance energy flows. An optimal sizing and dispatch model of the microgrid with model predictive control is developed. Simulations are carried out for representative days for a building-level microgrid serving a medium-sized commercial building. Results show that savings in first costs and operational costs can be realized if advanced controls are considered during design and component selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.