Abstract

The concentration and the major phase composition (particulate organic matter, CaCO3, opal, lithogenic matter, and iron and manganese oxyhydroxides) of marine particles is thought to determine the scavenging removal of particle-reactive TEIs. Particles are also the vector for transferring carbon from the atmosphere to the deep ocean via the biological carbon pump, and their composition may determine the efficiency and strength of this transfer. Here, we present the first full ocean depth section of size-fractionated (1–51µm, >51µm) suspended particulate matter (SPM) concentration and major phase composition from the US GEOTRACES North Atlantic Zonal Transect between Woods Hole, MA and Lisbon, Portugal conducted in 2010 and 2011. Several major particle features are notable in the section: intense benthic nepheloid layers were observed in the western North American margin with concentrations of SPM of up to 1648µg/L, two to three orders of magnitude higher than surrounding waters, that were dominated by lithogenic material. A more moderate benthic nepheloid layer was also observed in the eastern Mauritanian margin (44µg/L) that had a lower lithogenic content and, notably, significant concentrations of iron and manganese oxyhydroxides (2.5% each). An intermediate nepheloid layer reaching 102µg/L, an order of magnitude above surrounding waters, was observed associated with the Mediterranean Outflow. Finally, there was a factor of two enhancement in SPM at the TAG hydrothermal plume due almost entirely to the addition of iron oxyhydroxides from the hydrothermal vent. We observe correlations between POC and CaCO3 in large (>51µm) particles in the upper 2000m, but not deeper than 2000m, and no correlations between POC and CaCO3 at any depth in small (<51µm) particles. There were also no correlations between POC and lithogenic material in large particles. Overall, there were very large uncertainties associated with all regression coefficients for mineral ballast (“carrying coefficients”), suggesting that mineral ballast was not a strong predictor for POC in this section.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.