Abstract

Tin nanoparticles with different size distribution were synthesized using chemical reduction method by applying NaBH 4 as reduction agent. The Sn nanoparticles smaller than 100 nm were less agglomerated and no obviously oxidized. The melting properties of these synthesized nanoparticles were studied by differential scanning calorimetry. The melting temperatures of Sn nanoparticles in diameter of 81, 40, 36 and 34 nm were 226.1, 221.8, 221.1 and 219.5°C, respectively. The size-dependent melting temperature and size-dependent latent heat of fusion have been observed. The size-dependent melting properties of tin nanoparticles in this study were also comparatively analyzed by employing different size-dependent theoretical melting models and the differences between these models were discussed. The results show that the experimental data are in accordance with the LSM model and SPI model, and the LSM model gives the better understanding for the melting property of the Sn nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.