Abstract

Silver is commonly used antibacterial material, and showed improved results when doped to less expensive ZnO nanoparticles. Chemical reduction method with zinc acetate as host and silver nitrate as dopant precursor was used. The surface area of particles was enhanced by calcination in different atmospheric conditions. Antibacterial activity of synthesized nanoparticles was evaluated against different Gram-negative and Gram-positive bacterial strains. Minimum inhibitory (6 to 21 mM) and minimum bactericidal concentrations (23 to 47 mM) indicated that antibacterial activity of nanoparticles was increased by silver doping and calcination in oxygen atmosphere. The X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopic data further confirmed the hypothesis. Present study confirmed that oxygen treated silver doped zinc oxide nanoparticles could have pharmacological applications as alternative for antibiotics and disinfectants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.