Abstract

Monodisperse Fe(0) nanoparticles with diameters between 1.8 and 9.0 nm were prepared from organometallic {Fe[N(SiMe3)2]2}2 and intercalated into mesoporous MCF-17 silica. We observed high turnover frequencies of the catalytic CO hydrogenation; they increased with Fe particle size. Methane and short-chain olefin selectivities were highest for small particles, while the opposite trend applied to long-chain terminal olefins and oxygenates. The Anderson–Schulz–Flory chain lengthening probabilities were found to increase with Fe particle size for both paraffins and terminal olefins. Reaction-induced sintering of the metal particles was limited and could be explained by the transformation of Fe(0) precursors into (mainly) Fe-carbides. The results cast new light on the structure sensitivity of the catalytic CO hydrogenation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.