Abstract
Photothermal catalytic CO hydrogenation offers the potential to synthesize light hydrocarbons by using solar energy. However, the selectivity and activity of the reaction are still far below those achieved in conventional thermal catalytic processes. Herein, we report that the Co-modified Fe5 C2 on TiC catalyst promotes photothermal catalytic CO hydrogenation with a 59 % C2+ selectivity in the produced hydrocarbons and a 30 % single-pass CO conversion at a high gas hourly space-time velocity of 12 000 mL g-1 h-1 . Using in-situ-irradiated XPS, we show that light-induced hot electron injection from TiC to Fe5 C2 modulates the chemical state of Fe, thereby increasing the CO-to-C2+ conversion. This work suggests that it is possible for plasmon-mediated surface chemistry to enhance the activity and selectivity of photothermal catalytic reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.