Abstract
Iron oxide nanoparticles (Fe3O4 NPs) have been reported to be a promising agent for cancer therapy due to their outstanding ability in catalyzing the Fenton reaction and causing peroxidation. Generally, particles with size of hundreds of nanometers exhibit enhanced accumulation in tumor due to the enhanced permeation and retention effect. However, the large size hinders penetration within the dense collagen matrix. Here, we propose a multistage system to realize pH-responsive size switch for efficient drug delivery. In this system, ultrasmall Fe3O4 (∼4 nm) NPs are simultaneously modified with hydrophilic mPEG and hydrophobic N,N-dibutylethylenediamine (DBE) to form pH-responsive self-assembled iron oxide aggregations (SIOA). In the acidic tumor microenvironment, the protonation of DBE makes it transit from the hydrophobic to hydrophilic state, causing the disassembly of the SIOA and the release of loaded doxorubicin. The multistage Fe3O4 NPs demonstrate enhanced accumulation and efficient diffusion within the tumor, holding a promise for drug delivery and cancer therapy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have