Abstract

We aim to prepare a size-shifting nanocarrier for site-targeting mucosal drug delivery that can penetrate through mucus gel layer and remain close to the absorption membrane. As nanocarriers can be engineered to penetrate mucus but they can also back diffuse into outer mucus regions, a size shifting to micron range once they have reached the absorption membrane would prevent back-diffusion effect and extend drug release over a long period of time. For this purpose, we loaded solid lipid nanoparticles (SLN) with a phosphate ester surfactant and octadecylamine. Alkaline phosphatase (AP), a membrane bound enzyme was for the first time utilized as an in situ partner for triggering the size conversion at epithelial cell surface. Having the size of ~120 nm, SLN with hydrophilic and phosphate-decorated shells were shown to penetrate through mucus gel and form aggregates above cell layer surface. Aggregates of 5–8 µm were formed due to interparticle interactions induced by enzymatic phosphate removal after ~30 min in contact with isolated AP. The developed SLN system could be a potential tool for mucosal drug delivery to AP-expressing tissues like colon, lung, cervix, vagina and some mucus-secreting tumors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.