Abstract
Abstract In this study, simultaneous size, shape, and topology optimization of planar and space trusses are investigated. Moreover, the trusses are subjected to constraints for element stresses, nodal displacements, and kinematic stability conditions. Truss Topology Optimization (TTO) removes the superfluous elements and nodes from the ground structure. In this method, the difficulties arise due to unacceptable and singular topologies; therefore, the Grubler's criterion and the positive definiteness are used to handle such issue. Moreover, the TTO is challenging due to its search space, which is implicit, non-convex, non-linear, and often leading to divergence. Therefore, mutation-based metaheuristics are proposed to investigate them. This study compares the performance of four improved metaheuristics (viz. Improved Teaching–Learning-Based Optimization (ITLBO), Improved Heat Transfer Search (IHTS), Improved Water Wave Optimization (IWWO), and Improved Passing Vehicle Search (IPVS)) and four basic metaheuristics (viz. TLBO, HTS, WWO, and PVS) in order to solve structural optimization problems. Highlights Improvements in four recently designed metaheuristics. Use of random mutation-based search technique. Applications on challenging/benchmark problems of simultaneous size, shape, and topology optimization of truss structures. Improvements effective over basic metaheuristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.