Abstract
ABSTRACTThis study aimed to investigate the influence of surface deposition and coagulation on indoor particles larger than 0.25 μm by conducting tests in a room-sized enclosed chamber under different air temperatures. The particles, processed dust intercepted by indoor air conditioners, were generated using an aerosol generator. The deposition rate and coagulation coefficients were used to estimate the efficiency of indoor particle surface deposition and coagulation in this study. The results show that the deposition rates increase as the air temperature rises, and high temperatures can also increase the coagulation coefficient. In addition, test results show that the enhancement of indoor air mixing intensity can increase both the deposition rates and the coagulation efficiencies. The contribution of coagulation to the total decay of indoor particle concentrations decreases over time, and the contribution is higher for particles in the range of 0.25–0.5 μm than those in the range of 0.5–1.0 μm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Health Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.