Abstract

The structural, electronic, and optical properties of Si nanocrystals of different size and shape, passivated with hydrogens, OH groups, or embedded in a ${\text{SiO}}_{2}$ matrix are studied. The comparison between the embedded and free, suspended nanocrystals (NCs) shows that the silica matrix produces a strain on the embedded NCs, which contributes to determine the band gap value. By including the strain on the hydroxided nanocrystals, we are able to reproduce the electronic and optical properties of the full $\text{Si}/{\text{SiO}}_{2}$ systems. Moreover, we found that while the quantum confinement dominates in the hydrogenated nanocrystals of all sizes, the behavior of hydroxided and embedded nanocrystals strongly depends on the interface oxidation degree, in particular for diameters below 2 nm. Here, the proportion of NC atoms at the $\text{Si}/{\text{SiO}}_{2}$ interface becomes relevant, producing surface-related states that may affect the quantum confinement appearing as inner band gap states and then drastically changing the optical response of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.