Abstract

In contrast to the conventional doping of bulk silicon (Si), the doping of Si nanocrystals (NCs) that are often smaller than 5 nm in diameter may lead to serious structural changes. Since the electronic and optical properties of Si NCs are intimately associated with their structures, it is critical to understand how doping impacts the structures of Si NCs. By means of ab initio calculation we now compare 1.4 nm phosphorus (P)-doped Si NCs without structural relaxation and those with structural relaxation. Structural changes induced by structural relaxation are manifested by the stretching and compressing of bonds and apparent variations in bond angles. With the increase of the concentration of P structural changes induced by structural relaxation become more serious. It is found that structural relaxation makes differences in the energy-level schemes of P-doped Si NCs. Structural relaxation also causes the binding energy of an electron in a P-doped Si NC to more significantly increase as the concentration of P increases. With the increase of the concentration of P structural relaxation leads to more pronounced changes in the optical absorption of P-doped Si NCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call