Abstract
This paper describes the size optimization of a hybrid photovoltaic/fuel cell grid linked power system including hydrogen storage. The overall objective is the optimal sizing of a hybrid power system to satisfy the load demand of a university laboratory with an unreliable grid, with low energy cost and minimal carbon emissions. The aim is to shift from grid linked diesel power system to a clean and sustainable energy system. The optimum design architecture was established by adopting the energy-balance methods of HOMER (hybrid optimization model for electric renewables). Analysis of hourly simulations was performed to decide the optimal size, cost and performance of the hybrid system, using 22-years monthly averaged solar radiation data collected for Ambrose Alli University, Ekpoma (Lat. 6°44.3ʹN, Long. 6°4.8ʹE). The results showed that a hybrid system comprising 54.7 kW photovoltaic array, 7 kW fuel cell system, 14 kW power inverter and 3 kW electrolyzer with 8 kg hydrogen storage tank can sustainably augment the erratic grid with a very high renewable fraction of 96.7% at $0.0418/kWh. When compared with the conventional usage of grid/diesel generator system; energy cost saving of more than 88% and a return on investment of 41.3% with present worth of $308,965 can be derived in less than 3 years. The application of the optimally sized hybrid system would possibly help mitigate the rural-to-urban drift and resolve the electricity problems hindering the economic growth in Nigeria. Moreover, the hybrid system can alleviate CO2 emissions from other power generation sources to make the environment cleaner and more eco-friendly.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have