Abstract

In this study, size optimization for a high frequency AT-cut quartz resonator using finite element vibration analysis is presented. The objective resonator is a high frequency fundamental resonator with one-sided electrodes structure, which has high Q value and low resistance compared to the widely used overtone resonators. The one-sided electrodes structure was designed to obtain effective energy trapping and suppress inharmonic overtone (IO) mode. A convenient 2-D model using rectangular element was established to well reconcile calculation time with accuracy. A frequency mode chart describing the relationship between vibration coupling and size of quart plate was achieved. Vibration coupling and energy trapping effect were examined for different sizes of electrodes. COMSOL MULTIPHYSICS™ was adopted as a FEM analysis tool and the simulation results confirmed the effectiveness of this work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.