Abstract
A measure of association on cross-classification tables is row-size invariant if it is unaffected by the multiplication of all entries in a row by the same positive number. It is class-size invariant if it is unaffected by the multiplication of all entries in a class (i.e., a row or a column). We prove that every class-size invariant measure of association assigns to each cross-classification table a number which depends only on the cross-product ratios of its 2×2 subtables. We submit that the degree of association should increase when mass is shifted from cells containing a proportion of observations lower than what is expected under statistical independence to cells containing a proportion higher than expected–provided that total mass in each class remains unchanged. We prove that no continuous row-size invariant measure of association satisfies this monotonicity axiom if there are at least four rows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.