Abstract
We prove existence of (at most denumerable many) absolutely continuous invariant probability measures for random one-dimensional dynamical systems with asymptotic expansion. If the rate of expansion (Lyapunov exponents) is bounded away from zero, we obtain finitely many ergodic absolutely continuous invariant probability measures, describing the asymptotics of almost every point. We also prove a similar result for higher-dimensional random non-uniformly expanding dynamical systems. The results are consequences of the construction of such measures for skew-products with essentially arbitrary base dynamics and asymptotic expansion along the fibers. In both cases our method deals with either critical o singular points for the random maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.